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1. INTRODUCTION 
The electroencephalogram (EEG) is a complex and 

aperiodic time series which is a sum over a very large num-
ber of neuronal membrane potentials. Despite rapid ad-
vances of neuro-imaging techniques EEG recordings con-
tinue to play an important role in both, diagnosis of neuro-
logical diseases and understanding psychophysiological 
processes. In order to extract relevant information from 
recordings of brain electrical activity a variety of comput-
erized analysis methods have been developed. Most meth-
ods are based on the assumption that the EEG is generated 
by a highly complex linear system, resulting in characteris-
tic signal features like nonstationary or unpredictability [1]. 
Much research with nonlinear methods revealed that the 
EEG is generated by a chaotic neural process of low di-
mension [2-4]. According to these reports, the EEG has a 
finite noninteger correlation dimension and a positive 
Lyapunov exponent. Furthermore, the distinct states of 
brain activity had different chaotic dynamics quantified by 
nonlinear invariant measures such as correlation dimen-
sions and Lyapunov exponents [2-4]. In the present study, 
the computation of Lyapunov exponents was the basis for 
the automatic detection of electroencephalographic 
changes. More specifically, the EEG signals were modelled 
using multilayer perceptron neural networks (MLPNNs) 
trained with five different training algorithms. The com-
puted Lyapunov exponents defining the behavior of the 
EEG signals were used as inputs of the MLPNNs. 
 2. MATERIALS AND METHOD 

Decision making was performed in two stages: feature 
extraction by computing Lyapunov exponents (128 
Lyapunov exponents selected as neural network inputs) 
and classification using the MLPNNs trained with the 
backpropagation (BP), delta-bar-delta (DBD), extended 
delta-bar-delta (EDBD), quick propagation (QP), and 
Levenberg-Marquardt algorithms. We used the data de-
scribed in reference [5], which is publicly available. The 
MLPNNs were trained, cross validated and tested with the 
computed Lyapunov exponents of the EEG signals (set A - 
EEG signals recorded from healthy volunteers with eyes 
open, set D - EEG signals recorded from epilepsy patients 
in the epileptogenic zone during a seizure-free interval, and 
set E - EEG signals recorded from epilepsy patients during 
epileptic seizures). 

Lyapunov exponents are a quantitative measure for 
distinguishing among the various types of orbits based 

upon their sensitive dependence on the initial conditions, 
and are used to determine the stability of any steady-state 
behavior, including chaotic solutions. The reason why 
chaotic systems show aperiodic dynamics is that phase 
space trajectories that have nearly identical initial states 
will separate from each other at an exponentially increasing 
rate captured by the so-called Lyapunov exponent [6-9]. 
This is defined as follows. Consider two (usually the near-
est) neighboring points in phase space at time 0 and at time 
t, distances of the points in the i-th direction being  ||δxi(0)|| 
and ||δxi(t)||, respectively. The Lyapunov exponent is then 
defined by the average growth rate λi of the initial dis-
tance, 

   or 

             
The existence of a positive Lyapunov exponent indi-

cates chaos [6-9]. This shows that any neighboring points 
with infinitesimal differences at the initial state abruptly 
separate from each other in the i-th direction. In other 
words, even if the initial states are close, the final states are 
much different. This phenomenon is sometimes called 
sensitive dependence on initial conditions. 
3. RESULTS AND DISCUSSION 

A rectangular window, which was formed by 256 dis-
crete data, was selected so that it contained a single EEG 
segment. For the three diagnostic classes (set A - EEG 
signals recorded from healthy volunteers with eyes open, 
set D - EEG signals recorded from epilepsy patients in the 
epileptogenic zone during a seizure-free interval, and set E 
- EEG signals recorded from epilepsy patients during epi-
leptic seizures) training and test sets were formed by 1200 
vectors (400 vectors from each class) of 128 dimensions 
(Lyapunov exponents). In the present study, the technique 
used in the computation of Lyapunov exponents was re-
lated with the Jacobi-based algorithms. The Lyapunov 
exponents of the typical segment of EEG signals (set A - 
EEG signals recorded from healthy volunteers with eyes 
open, set D - EEG signals recorded from epilepsy patients 
in the epileptogenic zone during a seizure-free interval, and 
set E - EEG signals recorded from epilepsy patients during 
epileptic seizures) are given in Figures 1(a)-(c), respec-
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tively. It can be noted that the Lyapunov exponents of the 
three types of EEG signals are different from each other. 
From Figure 1(a) one can see that all the Lyapunov expo-
nents are positive, which confirm the chaotic nature of the 
EEG signals recorded from healthy volunteers with eyes 
open. As it is seen from Figures 1(b) and 1(c) there are posi-
tive Lyapunov exponents, which confirm the chaotic nature 
of the EEG signals recorded from epilepsy patients in the 
epileptogenic zone during a seizure-free interval, and epi-
lepsy patients during epileptic seizures. As it is seen from 
Figures 1(a)-(c) there are positive Lyapunov exponents, 
which confirm the chaotic nature of the EEG signals. 

In the present study, after several trials it was seen that 
two hidden layered network achieved the task in high accu-
racy. The most suitable network configuration found was 10 
neurons for each hidden layer. In the hidden layers and the 
output layer, sigmoidal function was used, which introduced 
two important properties. First, the sigmoid is nonlinear, 
allowing the network to perform complex mappings of input 
to output vector spaces, and secondly it is continuous and 
differentiable, which allows the gradient of the 
error to be used in updating the weights. The 
MLPNNs were trained by using the BP, DBD, 
EDBD, QP, and Levenberg-Marquardt algo-
rithms. For the Levenberg-Marquardt algorithm, 
the Marquardt parameter (γ) was set to 0.01. 
The MLPNNs were implemented by using the 
MATLAB software package (MATLAB version 
7.0 with neural networks toolbox). The adequate 
functioning of ANN depends on the sizes of the 
training set and test set. The 600 vectors (200 
vectors from each class) were used for training 

and the 600 vectors (200 vectors from each class) were used 
for testing. A practical way to find a point of better generali-
zation is to use a small percentage (around 20%) of the train-
ing set for cross validation. For obtaining a better network 
generalization 120 vectors (40 vectors from each class) of 
training set, which were selected randomly, were used as 
cross validation set. 

In training, a representative training set with examples 
was presented iteratively to the MLPNNs and the output 
activations were calculated using the MLPNNs weights. An 
error term, based on the difference between the output of 
MLPNNs and desired output, was then propagated back 
through the MLPNNs to calculate changes of the intercon-
nection weights. The square difference between the output 
of MLPNNs and the desired output over training iterations 
was plotted for observing how well the MLPNNs were 
trained. The curve of the mean square error (MSE) versus 
iteration is the training curve. The values of minimum MSE 
and final MSE of the MLPNNs trained with five different 
training algorithms during training and cross validation are 
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Figure 1. Lyapunov exponents of the EEG segments (a) set 
A (EEG signals recorded from healthy volunteers with eyes 
open), (b) set D (EEG signals recorded from epilepsy pa-
tients in the epileptogenic zone during a seizure-free inter-
val), (c) set E (EEG signals recorded from epilepsy patients 
during epileptic seizures)  

(a) 

(c) 

(b) 

MLPNN trained with 
different algorithms 

Number of epochs Minimum MSE 
Training
  

Cross 
validation 

Training Cross 
validation 

BP 5800 5800 0.005491 0.006119 
DBD 4000 4000 0.001662 0.001704 
EDBD 2800 2800 0.000761 0.000823 
QP 1700 1700 0.000345 0.000457 
Levenberg-Marquardt 800 800 0.000117 0.000226 

Table 1.  
The values of minimum and final MSE during training and cross validation 
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given in Table 1. As it is seen from Table 1, MSE curve of 
the MLPNN trained with the Levenberg-Marquardt algo-
rithm is converging to a small constant approximately zero 
in 800 epochs and  the BP, DBD, EDBD, QP algorithms 
have poor convergence rates comparing with the Levenberg-
Marquardt algorithm. 

The values of the statistical parameters indicating classi-
fication accuracies are given in Table 2. As it is seen from 
Table 2, the MLPNN trained with the Levenberg-Marquardt 
algorithm classified healthy segments, seizure free epilepto-
genic zone segments and epileptic seizure segments with the 
accuracy of 95.00%, 95.50% and 94.50%, respectively. The 
healthy segments, seizure free epileptogenic zone segments 
and epileptic seizure segments were classified with the accu-
racy of 95.00%. According to Table 2, the correct classifica-
tion rates of the MLPNN trained with the Levenberg-
Marquardt algorithm for healthy segments, seizure free epi-
leptogenic zone segments and epileptic seizure segments are 
higher than that of the other MLPNNs. 
4. CONCLUSION 

This paper presented a new application for automated 
diagnosis of electroencephalographic changes using 
Lyapunov exponents. Toward achieving this aim, the EEG 
signals were considered as chaotic signals and this consid-
eration was tested successfully by the computation of 
Lyapunov exponents. This was the basis for the automated 
diagnosis of electroencephalographic changes. More specifi-
cally, the EEG signals were modelled using the MLPNNs. 
The MLPNNs trained with the BP, DBD, EDBD, QP, and 
Levenberg-Marquardt algorithms were used to detect elec-
troencephalographic changes. The MLPNNs were trained, 
cross validated and tested with the computed Lyapunov 
exponents of the EEG signals recorded from healthy volun-
teers with eyes open, epilepsy patients in the epileptogenic 
zone during a seizure-free interval, and epilepsy patients 
during epileptic seizures. The classification results and the 
values of statistical parameters were used for evaluating the 
classifiers. The classifications of the healthy segments, sei-
zure free epileptogenic zone segments and epileptic seizure 
segments, performed by the MLPNN trained with the 

Levenberg-Marquardt algorithm, were done with the accu-
racy of 95.00%. We therefore have concluded that the pro-
posed classifier trained with the Levenberg-Marquardt algo-
rithm can be used in detecting electroencephalographic 
changes. 
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MLPNN 
trained with 
different 
algorithms 

Statistical parameters (%) 
Specificity 
(healthy 
segments) 

Sensitivity 
(seizure free epilepto-
genic zone segments) 

Sensitivity 
(epileptic seizure  
segments) 

Total 
Classification 
Accuracy 

BP 87.50 88.00 87.00 87.50 
DBD 90.00 90.50 89.50 90.00 
EDBD 90.50 91.00 91.00 90.83 
QP 92.50 92.00 91.50 92.00 
Levenberg-
Marquardt 95.00 95.50 94.50 95.00 

Table 2.  
The values of statistical parameters 
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